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Magnetometry techniques based on nitrogen-vacancy �NV� defects in diamond have received much attention
of late as a means to probe nanoscale magnetic environments. The sensitivity of a single NV magnetometer is
primarily determined by the transverse spin-relaxation time, T2. Current approaches to improving the sensitiv-
ity employ crystals with a high NV density at the cost of spatial resolution or extend T2 via the manufacture of
novel isotopically pure diamond crystals. We adopt a complementary approach in which optimal dynamic
decoupling techniques extend coherence times out to the self-correlation time of the spin bath. This suggests
single spin, room-temperature magnetometer sensitivities as low as 5 pT Hz−1/2 may be possible with current
technology.
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I. INTRODUCTION

Room-temperature single spin magnetometry using the
nitrogen-vacancy �NV� center in diamond has the potential
to revolutionize nanoscale imaging through fundamentally
new detection modes.1–8 Proposals to image nanoscale envi-
ronments exhibiting static �dc� and oscillatory �ac� magnetic
fields using NV systems2,3 have since been demonstrated
experimentally.4–6 By exploiting measured changes in quan-
tum decoherence7,8 these techniques have been extended to
include more general classes of randomly fluctuating �fluc-
tuating current �FC�� magnetic fields with comparable sensi-
tivity to the ac case.8 One prominent reason such room-
temperature single spin-detection techniques are of interest is
because of the potential to develop fundamentally new
imaging modes for biological systems with nanometer
resolution.9

The sensitivity of an NV magnetometer is governed by
the transverse spin-relaxation �dephasing� time T2, which for
ac detection using isotopically pure diamond has been dem-
onstrated at 4 nT Hz−1/2.6 Many important detection prob-
lems, particularly those related to biology,9 stand to gain sig-
nificant improvements with increased coherence times. In
this paper we show how optimal dynamic decoupling
techniques10 can be exploited to increase sensitivities by over
2 orders of magnitude. With sensitivities in the pT Hz−1/2

regime, and nanoscale spatial resolution, the ultrasensitive
NV magnetometer proposed here may have profound impli-
cations for nanobioimaging and sensing.

It is well known that coherence times may be improved
with the use of concatenated �CDD�,11 random, and periodic
dynamic decoupling schemes.12,13 The more recent Uhrig
DD �UDD� scheme was shown to be optimal for decoupling
a spin qubit from a bosonic bath,10 and has since been shown
to be optimal for all systems in which dephasing is the domi-
nant decoherence channel.14 This optimality stems from the
required UDD resources scaling linearly with the order to
which the environmental effects are suppressed. However,
UDD is unable to suppress longitudinal relaxation, whereas
CDD can. The use of UDD is ideally suited to the NV center

owing to long relaxation times �T1�1 s �Ref. 6��, even at
room temperature. The large Debye temperature allows for
negligible decoherence via phonon excitation of the crystal
lattice and a large zero-field splitting �2.88 GHz� of the
ground-state magnetic sublevels prevents longitudinal spin-
spin relaxation. Hence longitudinal relaxation may be ne-
glected, ensuring UDD is the optimal decoupling method.

Both ac and FC magnetometry schemes are based upon a
spin-echo microwave control sequence in which a � pulse is
used to flip the qubit at the halfway point of its evolution
�Fig. 1�c��, suppressing any quasistatic effects of the spin
bath. The ac scheme is concerned with detection of fields of
the form bac sin��t�, where the � pulse coincides with t
=� /�, ensuring a nonzero integral of the field trace, and
hence maximal phase shift of the NV spin. In this paper, we
incorporate UDD into ac and FC magnetometry schemes and
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FIG. 1. �Color online� �a� NV-center diamond lattice defect. �b�
NV spin detection through optical excitation and emission cycle.
Magnetic sublevels ms=0 and ms= �1 are split by a D
=2.88 GHz crystal field. Degeneracy between the ms= �1 sublev-
els is lifted by a Zeeman shift, ��. Application of 532 nm green
light induces a spin-dependent photoluminescence and pumping
into the ms=0 ground state. �c� Examples of controlled-ac fields
�solid� as seen by the NV center �dashed� in the presence of the
first, second, and fifth UDD sequence. Negative regions of the ac
trace are mapped to positive, ensuring maximal phase accumulation
of the NV spin. Slow FC fields, such as the surrounding nuclear
spin bath, will be suppressed, permitting the detection of ac and fast
FC fields with greater sensitivity.
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show that the sensitivity of a single NV center magnetometer
may be as low as 5 pT Hz−1/2 with the use of existing tech-
nology.

Recently it was shown that a particularly intuitive analysis
of a spin qubit placed in a slowly fluctuating classical mag-
netic field could be performed by expanding the time-
dependent field as a Taylor series.8 While this may seem like
a special case, this technique applies to a more general class
of pure-dephasing quantum problems in which longitudinal
relaxation may be ignored. We investigate the effect of UDD
on a spin qubit placed in such a field and show that it is the
nth UDD sequence that suppresses the effect of all terms up
to and including order n in the Taylor expansion of the field.
These results are applied to the NV center and used to obtain
improved sensitivities for NV-based magnetometry.

An NV center interacting with an external magnetic field
is described by the Hamiltonian H=Hzfs+Hext+Hint. The
first term describes the zero-field splitting of the ground-state
Zeeman levels, Hzfs=�DSz

2, where D=2.88 GHz. The inter-
action with an external magnetic field Bext�t� is described by
Hext. The fields we consider here are small relative to D and
are hence unable to induce a spin flip, permitting us to ignore
all Sx,y terms, giving Hext��Bext

�z�Sz, where � is the NV gy-
romagnetic ratio. For simplicity, we put Bext

�z� �Bext. The final
term describes the interaction with the paramagnetic environ-
ment of the diamond crystal. As we will see, for resolving
the nonunitary dynamics of the reduced density matrix of the
NV center, these interactions may be subsumed into a single
“internal magnetic field,” Bint�t�. We define the fluctuation
regime of the external/internal environment via the dimen-
sionless numbers, 	ext= ��
0

ext�ext�−1 and 	int= ��
0
int�int�−1,

where 
0
ext /
0

int are the rms field strengths and �ext /�int are the
correlation times of the internal and external environments,
respectively. Rapidly and slowly fluctuating fields satisfy 	
�1 and 	
1, respectively.

II. DEPHASING IN THE PRESENCE OF UHRIG
DYNAMIC DECOUPLING

An arbitrary time-dependent magnetic field may be de-
composed as a Taylor series in t :B�t�=�k=0

� akt
k. The validity

of this expansion rests upon the condition that ak+1tk+1

�akt
k for all k. This is satisfied for t��int /�2.8 For times t

��int the qubit will exhibit motional-narrowing behavior. In
many cases of practical interest, Bint is the sum of fields from
a large number of dipoles. This implies that the 	aj
 are nor-
mally distributed with zero mean at room temperature and
variance 
 j

2= �aj
2�. This leads to the following dephasing en-

velope:

D�t� = 

j=0

�

exp�− �� jt�2j+2� ,

where � j = � 1
�2

�
 j

j + 1�1/�j+1�

. �1�

Since �0��k∀k�1, �0 serves to define the free induction
decay time, T2

�=1 /�0. For a 1.1% 13C bath, the variance of

the magnetic field is given by 
0
2=�i�Bi

2�. For a 13C density
nc and gyromagnetic ratio �c, 
0��2�

3
�0

4�nc��c�2 �T, and
T2

��4 �s, in good agreement with Refs. 3 and 15. Similarly,
using an 0.3% 13C bath yields T2

��15 �s, in agreement with
Ref. 6.

The Hahn-echo sequence removes the effect of a static
field on the system as each � pulse effectively sends B→
−B. For a field described by �kakt

k, this will remove the
effect of the a0 term, and modify all other terms as aj � �1
−2−j�aj.

8 For an NV center, the correlation time of the envi-
ronment is dictated by interactions between 13C nuclei. A
straightforward calculation shows �int�� 6

�
4�
�0

/ �nc��c
2�

=15 ms. Using this in Eq. �1� for j=1 gives �1=2.1 kHz.
We identify T2=1 /�1=400 �s, in agreement with Refs. 3
and 15. For an 0.3% 13C bath we achieve T2=1.5 ms as seen
in Ref. 6. We do not define �int via interaction between 13C
nuclei and any background fields, B0, since this manifests as
decays and revivals on time scales of �r�1 /�cB0 and does
not represent a true loss of information. Such effects may be
mitigated by aligning B0 along the NV axis.

The phase shift of the NV spin, ��, is proportional to the
time integral of the applied field. If pulses m are applied at
the instants t1 , t2 , . . . , tm, the effect of the pulse sequence on
the phase shift will be

�� = ���
0

t1

− �
t1

t2

+ ¯ + �− 1�m�
tm

�

�B�t�dt . �2�

The effect of an arbitrary sequence of pulses on the jth term
in the Taylor expansion is then

aj � aj

��
0

t1

− �
t1

t2

¯ + �− 1�m�
tm

�

�tjdt

�
0

�

tjdt

. �3�

For a pulse sequence to suppress the effect of a field to order
n, the instants at which the pulses are applied must be chosen
to ensure

��
0

t1

− �
t1

t2

+ ¯ + �− 1�m�
tm

�

�tjdt = 0, �4�

not only for j=n but for all j�n.
For example, we may wish to modify our �

2 -�- �
2 pulse

sequence in order to remove the effect of the a1t term. If we
apply pulses at t= �

4 and t= 3�
4 , we find that the effects of both

a0 and a1 terms are suppressed. In general, suppression of all
terms up to and including order n will require at least n+1 �
pulses. We define �n,k as the time at which the kth pulse is
applied in the sequence that suppresses all field components
up to, and including, order n. Evaluation of Eq. �3� implies
that determination of the n+1 elements of the set Pn
= 	�n,0 , . . . ,�n,n+1
 will require the solution of the following
set of n+1 algebraic equations for �n,k:

a0:2�
k=1

n+1

�− 1�k−1�n,k + �− 1�n+1� = 0,
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a1:2�
k=1

n+1

�− 1�k−1�n,k
2 + �− 1�n+1�2 = 0,

]

an:2�
k=1

n+1

�− 1�k−1�n,k
n+1 + �− 1�n+1�n+1 = 0. �5�

To this point, there is some freedom in our choice of pulse
sequence, as Eq. �5� is satisfied to n=1 by both CDD and
UDD. However, if we solve Eq. �5� to n=2, we find P2

= 	 �
4 �2−�2� , �

2 , �
4 �2+�2�
, which is the third UDD sequence.

It is reasonable to conjecture that the nth component of the
field, antn, will be suppressed by the �n+1�th UDD sequence,
which we prove below.

For an interrogation time of �, the time of application of
the kth pulse in the nth UDD sequence is given by

�n,k = � sin2� �k

2n + 2
� , �6�

where 1�k�n.10 We wish to show that the �n+1�th UDD
sequence suppresses the effect of all terms up to and includ-
ing the nth term in the Taylor expansion of a time-dependent
magnetic field; and that the effect of all terms beyond n will
be reduced.

The phase accumulation of a spin qubit is proportional to
the time integral of the magnetic field to which it is exposed.
Each � pulse exchanges the basis states of the qubit Hilbert
space, which has the same effect on their relative phase as
mapping B�−B. Recall from Eq. �5� that the action of the
�n+1�th Uhrig pulse sequence will be to modify each of the
aj via aj � �2�k=1

n+1�−1�k−1sin2j+2� �k
2n+4 �+ �−1�n+1�aj. To prove

our claim, we must first show that

2�
k=1

n+1

�− 1�k−1sin2m� �k

2n + 4
� = �− 1�n. �7�

Using N�n+2, sin�x�= 1
2i �e

ix−e−ix�, and expanding as a bi-
nomial series in j, we arrive at

LHS = 21−2m�
j=0

2m

�− 1� j+m�2m

j
��

k=0

n−1

ei�ajmNk, �8�

where ajmN= m−j−N
N . Note that we have added the k=0 term

since � j=0
2m � 2m

j ��−1� j =0. Since we have restricted ourselves to
m�N−1, we have that ei�ajmN�1, so we are free to sum
over k as a geometric series in Eq. �8�, which is not possible
for m�N. This gives LHS=2−2m�−1�2m+N� j=0

2m � 2m
j �, which is

just the sum of terms in the �2m+1�th row of Pascal’s tri-
angle, and evaluates to 22m, proving Eq. �7�.

Replacing N with n+2, we can see that aj �0, ∀ j�n.
Hence all terms in the Taylor expansion of B�t� up to and
including order n are zero. Furthermore, since 0�sin2�x�
�1, the term in the square brackets is always less than 1,
hence the effect of the remaining aj is reduced. Two imme-
diate consequences are that the �n+1�th UDD sequence will
suppress dephasing to nth order; and that dephasing effects
beyond nth order will be reduced. If a0 , . . . ,an=0, then

�a0
2� , . . . , �an

2�=0. By Eq. �1� all rates, �0 , . . . ,�n, are zero.
From the above analysis, we see that the application of a

UDD sequence of any order will decrease the intrinsic NV
dephasing rate. This allows us to extend the interrogation
time, thus improving the sensitivity to an external magnetic
field, Bext�t�. Clearly the dynamics of Bext will be an impor-
tant factor in ensuring that the effect of the external field is
not also suppressed by the pulse sequence. Simple examples
include telegraph signals switching in sync with the UDD
sequence, or an ac field of controllable frequency whose
nodes coincide with each � pulse, which could be realized
by a single spin or ensemble of spins being driven by a
controllable microwave field. FC sensitivities to rapidly fluc-
tuating fields will also be improved since fields with corre-
lation times shorter than the interrogation time will not be
refocused by the UDD sequence.

III. SENSITIVITY ANALYSIS

We denote the dephasing envelope in the presence of the
�n+1�th pulse sequence as D�n��t�=
k=n

� Dk
�n��t� �Fig. 2�a��. In

the presence of background dephasing described by Eq. �1�,
the minimum induced phase from Bext�t� that may be mea-
sured is ���b�= �C�ND�n�����−1, where C describes photon
shot noise and imperfect collection3 and N is the number of
measurements taken. Typically C�0.3, however vast im-
provements have recently been demonstrated by entangling
the NV spin with proximate nuclear spins, permitting repeti-
tive readout of the NV spin state.16,17 We now discuss the
relevant detection protocols and sensitivities for different
fields to which these techniques apply.

A. Sensitivity limits: Controlled telegraph signals

For a telegraph signal switching between �B0 in sync
with each � pulse, the qubit will acquire the maximum pos-
sible phase for a given interrogation time, ��=�B0�. This
gives a magnetic field sensitivity of �ts

�n�=B0
�T

= �C���D�n�����−1. For all cases where 	int
1, we have that
�k��k+1 and �k��k

�n�,8 so we may approximate the total
dephasing envelope, D�n�, by the its leading order contribu-
tion. That is, D�n��t��exp�−��n+1t�2n+4�, implying the opti-
mal interrogation time is �=�n+1

−1 �4n+8�1/�2n+4�. We then find
the sensitivity to be bounded above by

0 5 10 15 20
10-6

10-4

10-2

100

Number of π pulses
5 100

0.5

1

Time (ms)

D
ep

ha
si
ng

en
ve
lo
pe

n=
1

n=
2

n=
4

n=
10

n=
25

n=
10

0
n=

∞

τint

Co
he

re
nc

e
tim

e
(s
)

(a) (b)

1.1% 13C
0.3% 13C
0.01% 13C

FIG. 2. �Color online� �a� Dephasing envelopes, D�n�, for an NV
center in a 1.1% 13C bath for n � pulses. As n→�, D�n� approaches
the Heaviside step function, H��ext− t�. �b� Effect of the number of
� pulses on NV coherence times for different 13C concentrations. In
each case, the coherence time is limited by �int.
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�+
�n� =

1

C�
�fe	int

−1/n. �9�

This upper bound, together with the actual sensitivity �see
below�, is plotted in Fig. 3�a� for an NV. Notice that, as
	int→1, there is little to be gained by applying UDD.

We now compute the sensitivity of the probe by taking
into account the effect of the nth order pulse sequence on the
nth order Taylor coefficient. This results in improved sensi-
tivity beyond that indicated above, as a reduction in the ak
leads to a reduction in the total decoherence rate, and hence
an extended interrogation time.

The dephasing rates are found via Eq. �1�, where

 j

�n�� �2�k=1
n+1�−1�k−1sin2j+2� �k

2n+4 �+ �−1�n+1�
 j. The actual
dephasing time due to the combined effect of all the �k

�n� will
be given by the solution to �k=n+1

� ��k
�n�t�2k+2−1=0 for t and

are plotted against the number of pulses used in the sequence
in Fig. 2�b�. From this we see that dephasing times asymp-
tote to the correlation time of the bath. This is to be expected
since information lost to the bath cannot be recovered by
control of the NV spin alone. Retaining all terms, the sensi-
tivity is then

��n���� =
1

���
exp� �

k=n+1

�

��k
�n���2k+2� . �10�

By minimizing this expression with respect to � we deter-
mine the optimal sensitivity, �ts

�n�, as shown in Fig. 3�a�.

B. ac fields

In many proposals2,3 magnetic resonance techniques are
used to drive the sample magnetization at some controlled
frequency. For a general sinusoidal field, given by
Bac sin��t+��, the corresponding sensitivity with which Bac
may be measured is

�ac
�n� = �ts

�n��

2 ��
k=0

n

�− 1�k�
�n,k

�n,k+1

sin��nt + �n�dt�−1

, �11�

where �n and �n are the frequency and ac phase offset that
minimize �ac

�n�. For example, for n=1, the NV spin will ac-
quire maximum phase when �=2� /� and �=0. For n=5,
�5=9� /2� and �5=3� /4. The optimal ac sensitivity is plot-

ted as a function of the number of pulses in Fig. 3�a�.
Alternatively, by controlling the power of a proximate mi-

crowave field source, we may synchronize environment
NMR/electron spin resonance �ESR� control frequencies
with the chosen pulse sequence. This allows a piecewise con-
tinuous sinusoidal signal to be produced whose nodes coin-
cide with the time of application of each pi pulse �Fig. 1�c��,
giving a sensitivity of

�cac
�n� =

�

2
�ts

�n�. �12�

C. Randomly fluctuating (FC) fields

Many typical biological samples have a high nuclear spin
density, which can result in significant additional dephasing.
If the dynamics are fast �	ext�1�, as in the case of Brown-
ian motion, for example, the additional dephasing may be
detected as a perturbation in the dephasing rate.8 The dephas-
ing envelope will be modified by a factor of Dext���=
exp�−�ext��, where �ext=

1
2�p

2
ext
2 �ext. The sensitivity with

which 
ext=��Bext
2 �− �Bext�2 may be measured is then8

�FC = 2	ext�ts
�n�, �13�

making the field more difficult to detect as the fluctuation
rate increases. This is consistent with motional narrowing
phenomena in NMR in which high frequency noise is known
to have a reduced effect on the sample T2 as compared with
quasistatic noise. If the dynamics are slow �	ext
1�, the
dephasing will be suppressed, permitting the application of
the ac methods outlined above.

D. Effects of finite width pulses

Coherent manipulation of the NV is achieved via a reso-
nant ESR transition or Rabi cycle. Instantaneous � pulses
cannot be achieved in practice and lead to additional deco-
herence effects. For a Rabi frequency of �, the decoherence
envelope is given by DR= �1+ ��2
0

2t /��2�−1/4,18 and typical
pulse errors are �1%.3 Hence for n � pulses, the sensitivity
will be worsened by a factor of �0.99−n−1�1
+ n+1

4 ����
0 /��4�, as shown in Fig. 3�b�. For a pulse width
of 50 ns, 13� pulses is found to be optimal, with �ts

�13�

�5.5 pT Hz−1/2.
Cases where the total pulse time is significant compared

with the total interrogation time have been considered,19

however, since we are dealing with extremely long coher-
ence times and short pulse times, these effects have been
neglected in this analysis.

IV. CONCLUSIONS

We have theoretically investigated the improvements as-
sociated with the application of the optimal UDD sequence
to an NV-based magnetometer. Results show that dephasing
times are ultimately limited by the self-correlation time of
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the fluctuating environment, thus NV magnetometer interro-
gation times may be extended by nearly four orders of mag-
nitude beyond the free-induction decay time. In light of these
results, we have shown that incorporation of UDD into cur-
rent single NV magnetometer protocols may yield sensitivi-
ties below 5 pT Hz−1/2 at room temperature in the near fu-
ture. Such techniques have the potential to yield great

improvements to nanoscale sensing, particularly nanobio-
logical processes occurring at room temperature.
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